教授(正高职)

雍华东

职  称:教授
职  务:力学与工程科学系主任
专  业:固体力学
所在系所:工程力学系 / 固体力学研究所
通讯地址:甘肃省兰州市天水南路222号兰州大学土木工程与力学学院,730000
电子信箱: yonghd@lzu.edu.cn
联系电话:+86(0)0931-8914560
传  真:+86(0)0931-8914561
主要学历
2000.09—2004.06 西安交通大学建筑工程与力学学院,工程力学,本科生,工学学士
2004.09—2006.06 兰州大学土木工程与力学学院 固体力学,硕士研究生(硕博连读)
2006.09—2010.06 兰州大学土木工程与力学学院 固体力学,博士生,工学博士学位
2008.10—2010.02 美国哈佛大学工程与应用科学学院 公派留学
主要学术经历
2010.07—2011.4 兰州大学土木工程与力学学院 讲师
2011.4—2014.4 兰州大学土木工程与力学学院 副教授
2014.4—兰州大学土木工程与力学学院 教授
主要研究方向
1. 超导材料与结构中的多场耦合非线性力学行为
2. 智能材料与结构力学
主要讲授课程
理论力学
数学物理方程
断裂力学
弹塑性力学
招生专业
欢迎力学、电气工程、土木工程、机械工程专业学生报考
主要学术成就、奖励及荣誉
2007 兰州大学求是奖学金
2012 全国优秀博士学位论文提名
2013 教育部新世纪优秀人才支持计划
2016 兰州大学青年五四奖章
2017 中国力学学会全国徐芝纶力学优秀教师奖
2019 全国周培源力学竞赛优秀指导教师
2019 国际大学生工程力学竞赛(亚洲赛区)优秀指导教师
2019 教育部“长江学者奖励计划”青年学者
2020 甘肃省领军人才(第二层次)
主要科研项目及角色

1. 国家自然科学基金联合基金重点项目,U2241267,层间应力对二代高温超导磁体性能影响机理研究,2023/01-2026/12,在研,主持

2. 国家自然科学基金面上项目,12172155,极端多场环境下超导导体的多尺度非线性力学行为研究,2022/01-2025/12,在研,主持

3. 国家自然科学基金面上项目,11872195,超导导体的失超行为及力学特性研究,2019/01-2022/12,结题,主持

4. 国家自然科学基金面上项目,11472120,超导体力电特征及电磁行为可调性的研究,2015/01-2018/12,已结题,主持

5. 国家自然基金委创新研究群体项目,11421062,复杂环境与介质相互作用的非线性力学(第二期),2015/01-2017/12,已结题,参加

6. 国家科技计划国际热核聚变实验堆(ITER)专项课题,2013GB110002,聚变堆大型超导磁体的力学分析方法,2013/03-2017/04,已结题,参加

7. 国家自然科学基金青年基金项目,11202087,超导薄膜基底结构中关键力学问题的基础研究,2013/01-2015/12, 已结题,主持

8. 国家自然科学基金重点项目,11032006,超导电-磁-热-力多场耦合非线性力学的基础理论与实验研究,2011/01-2014/12,已结题,参加

代表性论著

1. S. J. Wang, H. D. Yong, Y. H. Zhou, Calculations of the AC losses in superconducting cables and coils: Neumann boundary conditions of the T–A formulation. Superconductor Science and Technology, 2022, 35: 065013.

2. M. D. Niu, H. D. Yong, Y. H. Zhou, 3D modelling of coupled electromagnetic-mechanical responses in REBCO coils involving tape inhomogeneity. Superconductor Science and Technology, 2022, 35: 054009.

3. D. H. Liu, D. K. Li, W. W. Zhang, H. D. Yong, Y. H. Zhou, Electromagnetic-thermal -mechanical characteristics with active feedback control in a high-temperature superconducting no-insulation magnet. Science China Physics, Mechanics & Astronomy, 2022, 65: 294612.

4. D. K. Li, D. H. Liu, H. D. Yong, Ramping loss and mechanical response in a no-insulation high-temperature superconducting layer-wound coil and intra-layers no-insulation coil. Science China Technological Sciences, 2022, 65: 115–130.

5. Y. K. Tang, D. H. Liu, D. K. Li, H. D. Yong, Y. H. Zhou, A modified model to estimate the screening current-induced magnetic field of a REBCO magnet. Superconductor Science and Technology, 2022, 35: 045013.

6. X. B. Peng, H. D. Yong, Y. H. Zhou, Three-dimensional simulation of single-lap and bridge joints of coated conductor under tension and bending tests. Composite Structures, 2022, 284: 115146.

7. S. J. Wang, H. D. Yong, Y. H. Zhou, Modified FFT-based method for the calculations of the thin superconductors with transport current. AIP Advances, 2021, 11:035103.

8. M. D. Niu, J. Xia, H. D. Yong, Y. H. Zhou, Quench characteristics and mechanical responses during quench propagation in rare earth barium copper oxide pancake coils. Applied Mathematics and Mechanics (English Edition), 2021, 42: 235–250.

9. D. H. Liu, D. K. Li, W. W. Zhang, H. D. Yong, Y. H. Zhou, Electromagnetic-thermal-mechanical behaviors of a no-insulation double-pancake coil induced by a quench in the self field and the high field. Superconductor Science and Technology, 2021, 34: 025014.

10. Z. D. Chen, H. D. Yong, Y. H. Zhou, Manipulation of vortex arrays with thermal gradients by applying dynamic heat sources. Superconductor Science and Technology, 2021, 34: 045005.

11. H. T. Shen, Y. Y. Ru, H. W. Wu, X. K. Hu, H. D. Yong, Y. H. Zhou, Three-dimensional peridynamic modeling of crack initiation and propagation in bulk superconductor during field cooling magnetization. Superconductor Science and Technology, 2021, 34: 085020.

12. M. D. Niu, J. Xia, H. D. Yong, Numerical analysis of the electromechanical behavior of high-field REBCO coils in all-superconducting magnets. Superconductor Science and Technology, 2021, 34: 115005.

13. Y. Yang, H. D. Yong, X. Y. Zhang, Y. H. Zhou, Numerical Simulation of Superconducting Generator Based on the T-A Formulation. IEEE Transactions on Applied Superconductivity, 2020, 30: 5207611.

14. H. W. Wu, H. D. Yong, Y. H. Zhou, Analysis of mechanical behavior in inhomogeneous high-temperature superconductors under pulsed field magnetization. Superconductor Science and Technology, 2020, 33: 124002.

15. H. Chen, H. D. Yong, Y. H. Zhou, XFEM analysis of the fracture behavior of bulk superconductor in high magnetic field. Journal of Applied Physics, 2019, 125: 103901.

16. D. H. Liu, W. W. Zhang, H. D. Yong, Y. H. Zhou, Numerical analysis of thermal stability and mechanical response in a no-insulation high-temperature superconducting layer-wound coil. Superconductor Science and Technology, 2019, 32: 044001.

17. Y. Y. Ru, H. D. Yong, Y. H. Zhou, Numerical simulation of dynamic fracture behavior in bulk superconductors with an electromagnetic-thermal model. Superconductor Science and Technology, 2019, 32: 074001.

18. D. H. Liu, W. W. Zhang, H. D. Yong, Y. H. Zhou, Thermal stability and mechanical behavior in no-insulation high temperature superconducting pancake coils. Superconductor Science and Technology, 2018, 31: 085010.

19. Y. Yang, H. D. Yong, Y. H. Zhou, Electro-mechanical behavior in arrays of superconducting tapes. Journal of Applied Physics, 2018, 124: 073902.

20. Y. R. Lu, Z. Jing, H. D. Yong, Y. H. Zhou, Flux avalanche in thin superconducting film with internal crack. Science China-Physics Mechanics and Astronomy, 2018, 61: 094621.

21. Z. D. Chen, H. D. Yong, Y. H. Zhou, Effect of pinning on the vortex motion in superconducting strip. Physica C, 2018, 552: 22-26.

22. Y. Y. Ru, H. D. Yong, Y. H. Zhou, Fracture analysis of bulk superconductors under electromagnetic force. Engineering Fracture Mechanics, 2018, 199: 257-273.

23. Y. Yang, H. D. Yong, Y. H. Zhou, Mechanical behavior in superconducting composite wires. European Journal of Mechanics A-Solids, 2018, 70: 191-202.

24. H. W. Wu, H. D. Yong, Y. H. Zhou, Stress analysis in high-temperature superconductors under pulsed field magnetization. Superconductor Science and Technology, 2018, 31: 045008.

25. Z. Y. Wang, H. D. Yong, Y. H. Zhou, Degradation of critical current in Bi2212 composite wire under compression load. Applied Mathematics and Mechanics (English Edition), 2017, 38: 1773-1784.

26. B. X. Liu, Z. Jing, H. D. Yong, Y. H. Zhou, Strain distributions in superconducting strands with twisted filaments. Composite Structures, 2017, 174: 158-165.

27. Y. R. Lu, Z. Jing, H. D. Yong, Y. H. Zhou, Flux avalanche in a superconducting film with non-uniform critical current density. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2016, 472: 20160469.

28. H. D. Yong, Z. Jing, and Y. H. Zhou, Crack problem for superconducting strip with finite thickness. International Journal of Solids and Structures, 2014, 51: 886-893.

29. H. D. Yong, M. Zhao, Z. Jing, and Y. H. Zhou, Effect of shear stress on electromagnetic behaviors in superconductor-ferromagnetic bilayer structure. Journal of Applied Physics, 2014, 116: 123911.

30. H. D. Yong, X. Z. He, Y. H. Zhou, Dynamics of a thick-walled dielectric elastomer spherical shell. International Journal of Engineering Science, 2011, 49: 792-800.

31. H. D. Yong, F. Z. Liu, Y. H. Zhou, Analytical solutions of the Ginzburg-Landau equations for deformable superconductors in a weak magnetic field. Applied Physics Letter, 2010, 97: 162505.

32. Y. H. Zhou, H. D. Yong, Crack problem for a long rectangular slab of superconductor under an electromagnetic force. Physical Review B, 2007, 76: 094523.

33. H. D. Yong, Y. H. Zhou, Transient response of a cracked magnetoelectroelastic strip under anti-plane impact. International Journal of Solids and Structures, 2007, 44: 705-717.